Structural and kinetic analysis of the chemical rescue of the proton transfer function of carbonic anhydrase II.

نویسندگان

  • D Duda
  • C Tu
  • M Qian
  • P Laipis
  • M Agbandje-McKenna
  • D N Silverman
  • R McKenna
چکیده

Histidine 64 in human carbonic anhydrase II (HCA II) functions in the catalytic pathway of CO(2) hydration as a shuttle to transfer protons between the zinc-bound water and bulk water. Catalysis of the exchange of (18)O between CO(2) and water, measured by mass spectrometry, is dependent on this proton transfer and was decreased more than 10-fold for H64A HCA II compared with wild-type HCA II. The loss of catalytic activity of H64A HCA II could be rescued by 4-methylimidazole (4-MI), an exogenous proton donor, in a saturable process with a maximum activity of 40% of wild-type HCA II. The crystal structure of the rescued complex at 1.6 A resolution shows 4-MI bound in the active-site cavity of H64A HCA II, through pi stacking interactions with Trp 5 and H-bonding interactions with water molecules. In this location, 4-MI is about 12 A from the zinc and approximates the observed "out" position of His 64 in the structure of the wild-type enzyme. 4-MI appears to compensate for the absence of His 64 and rescues the catalytic activity of the H64A HCA II mutant. This result strongly suggests that the out conformation of His 64 is effective in the transfer of protons between the zinc-bound solvent molecule and solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The refined atomic structure of carbonic anhydrase II at 1.05 A resolution: implications of chemical rescue of proton transfer.

Using synchrotron radiation and a CCD detector, X-ray data have been collected at 100 K for the His64Ala mutant of human carbonic anhydrase II complexed with 4-methylimidazole (4-MI) to a maximal 1.05 A resolution, allowing full anisotropic least-squares refinement. The refined model has a conventional R factor of 15.7% for all reflections. The C(alpha) coordinates of the model presented here h...

متن کامل

pH Dependence Study of the Kinetic Reaction of Bovine Carbonic Anhydrase with 2,2'-Dithiobispyridine in the Absence and Presence of Surfactants

The pH dependence study reveals that the Cys 206 sulphydryl group of bovine carbonicanhydrase in the native form is not exposed. During the reaction of 2,2'-dithiobispyridine (2-DTP) with the enzyme, there was no absorbance change recorded. In the presence ofsurfactants, the pH dependence profiles of the apparent second order rate constants, kapp, forthe reaction of 2-DTP with bovine carbonic a...

متن کامل

Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active-site model of carbonic anhydrase II.

The rate constant of the reaction catalyzed by the enzyme carbonic anhydrase II, which removes carbon dioxide from body fluids, is calculated for a model of the active site. The rate-determining step is proton transfer from a zinc-bound water molecule to a histidine residue via a bridge of two or more water molecules. The structure of the active site is known from X-ray studies except for the n...

متن کامل

Chemical rescue in catalysis by human carbonic anhydrases II and III.

The maximal velocity of catalysis of CO(2) hydration by human carbonic anhydrase II (HCA II) requires proton transfer from zinc-bound water to solution assisted by His 64. The catalytic activity of a site-specific mutant of HCA II in which His 64 is replaced with Ala (H64A HCA II) can be rescued by exogenous proton donors/acceptors, usually derivatives of imidazole and pyridine. X-ray crystallo...

متن کامل

Study of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods

Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 40 6  شماره 

صفحات  -

تاریخ انتشار 2001